
LLM 进化分岔口:多模态、成本、代码推理
LLM 进化分岔口:多模态、成本、代码推理头部模型的新一代模型的是市场观测、理解 LLM 走向的风向标。即将发布的 OpenAI GPT-Next 和 Anthropic Claude 3.5 Opus 无疑是 AGI 下半场最关键的事件。
头部模型的新一代模型的是市场观测、理解 LLM 走向的风向标。即将发布的 OpenAI GPT-Next 和 Anthropic Claude 3.5 Opus 无疑是 AGI 下半场最关键的事件。
企业要用好 LLM 离不开高质量数据。和传统机器学习模型相比,LLM 对于数据需求量更大、要求更高,尤其是非结构化数据。而传统 ETL 工具并不擅长非结构化数据的处理,因此,企业在部署 LLM 的过程中,数据科学家们往往要耗费大量的时间精力在数据处理环节。这一环节既关系到 LLM 部署的效率和质量,也对数据科学家人力的 ROI 产生影响。
从几周前 Sam Altman 在 X 上发布草莓照片开始,整个行业都在期待 OpenAI 发布新模型。根据 The information 的报道,Strawberry 就是之前的 Q-star,其合成数据的方法会大幅提升 LLM 的智能推理能力,尤其体现在数学解题、解字谜、代码生成等复杂推理任务。这个方法也会用在 GPT 系列的提升上,帮助 OpenAI 新一代 Orion。
AGI 正在迎来新范式,RL 是 LLM 的秘密武器。
昨天,李沐回到了母校上海交大,做了一场关于 LLM 和个人生涯的分享。本文是机器之心梳理的李沐演讲内容
Replika 是一款虚拟陪伴(AI 伴侣)应用,成立于 2017 年,在 LLM 技术爆发之前。
检索增强生成(Retrieval-Augmented Generation, RAG)技术正在彻底革新 AI 应用领域,通过将外部知识库和 LLM 内部知识的无缝整合,大幅提升了 AI 系统的准确性和可靠性。然而,随着 RAG 系统在各行各业的广泛部署,其评估和优化面临着重大挑战
预计在 2025 年能看到企业端 GenAI 的大规模放量
大语言模型 (LLM) 经历了重大的演变,最近,我们也目睹了多模态大语言模型 (MLLM) 的蓬勃发展,它们表现出令人惊讶的多模态能力。 特别是,GPT-4o 的出现显著推动了 MLLM 领域的发展。然而,与这些模型相对应的开源模型却明显不足。开源社区迫切需要进一步促进该领域的发展,这一点怎么强调也不为过。
随着大型语言模型(LLM)技术日渐成熟,各行各业加快了 LLM 应用落地的步伐。为了改进 LLM 的实际应用效果,业界做出了诸多努力。